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I . INTRODUCTION

Electromagnetic scattering from a movin g body generally is a very
difficult problem to solve. Due to the motion of the scatterer , the con-
stitutive parameters , i , c and o are not only functions of position but
also funct ions  of time , thus introducing modula tion in the scattered
f i elds . To make th in gs worse , the boundary condit i ons for a moving body
are much more complicated than those encountered in problems involving
stationary bodies only [1]. These are probably the main roadblocks to
obtainin g the solutions of the scattering problems involving moving bodies.

However , i n some cases , approximate solutions of the scattering
problems involving moving bodies can be obtained. In this report we
shal l  discuss the backscatter of a lar ge rotat in g conduct i ng cyl i nder.
Approximate solutions of the backscatter will be obtained using the quasi—
stationary method . The investigation of this problem stems from the cur-
rent interest in the DADAM phenomena which involv e the identification of
movin g vehicles based on the characteristic modulations that they impose
on their radar returns.

11 . FORMULATION AND NUMERICAL SOLUTIONS

An infin itely l ong conducting cylinder is rotating at an angular
velocit y ~ about its axis. A plane wave is incident normally upon the
cylin der. Due to the rotation of the cylinder , the constitutive para-
meters are then periodic functions of time with period 1. For a cyl i nder
with arbitrary cross-section , T=211/cf. However, for an ortho gonal polygon-
cyl i nder , T~2Tr/Na , where U is the number of sides of the polygon . Assume
that l /T is much smaller than the frequency of the incident wave. Then
the backscatter is both amplitude and phase modulated which can be written
as

j w~t
= ~(t) e , (1)

where W 0 
is the incident angular frequency and r(t) is a complex function

of t with period T. Because of the assumption , 2n/T<~w0, the negative
frequency components of the Fourier transform of E5 w i l l  be negli g i b le .
Therefore Es can be considered as an analytic signal .

An exact solution of z(t) can be obtained in two ways. The first
is to solve the scattering problem in the time domain using boundary
cond itions for moving bodies. The second involves transformations from
the laboratory frame to a non- inertial frame which is corotating with
the cylin der. Both methods are very tedious and solutions difficult to
ob ta i n . However , under the assumptions that w0>>2ir /T and that the linear
veloc ity of the cylinder (v = acs, a = the largest radius) is much smaller
than the velocity of light in vacuum , an approx imate solution of z(t)
can be muc h easily obtained using the quasi-stationary method . Using this
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method , the backscatter ~(t) at each time t is obtained as if the cylin-der were stationary . The ordinary frequency domain techniques and the
boundary conditions for stationary bodies can then be applied to solve
the problem . The i nequalities w0>>2i~/T and c>>aa are easily satisfiedwith high incident frequency and low rotating velocity . Thus the quasi—
stationary method can be employed in many practical situati ons.

In applying the quasi-stationary method , GTD (geometrical theory
of diffraction) techniques can be employed for solving E(t) from a large
conducting cylinder. In the fol lowing, we shall first briefly review
the GID techniques pertinent to this problem. For a more detailed form-
ulation readers are referred to a paper by Wang* [2].

As shown in Figure 1, a conducting convex cylinder is illumi nated
by a line source. The cylinder is modeled as a polygonal cylinder with
N flat faces. The line source illumi nates the polygonal cylinder giving

LINE SOURCE
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Figure 1. The self-consistent representation of the
surface wave s travel i ng on the t r iang ular
cylinder.
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rise to reflected fields and edge-diffracted fields , which consist of
sin gly- and multiply-diffracte d fields. The multiply -diffracted rays
are due to those surface waves traveling , at least once, along the sur-
face of the polygonal cylinder and then diffracting from the edges of
the polygon. The surface waves on each side of the polygon are conveni-
ently combined into two such waves traveling in opposite directions .
Hence there are totally 2N surface waves on a polygonal cylinder with N
sides. The amplitudes of these surface waves need be solved first. We
shall use the triangular cylinder of Figure 1 as an example to set up
equations for solving these amplitudes.

In Figure 1 the C j are the unknown amplitudes of the surface waves
on the polygon faces. The surface wave field is defined as

-j kp
U ( p )  ~~ 

e 
, (2)

where k = . 0/c , and 0 is the distance from the caustic of tbe surface
wave to the field point. This field equation is not valid at the caustic.
The boundary condition at the corners may be expressed as follows :

at corner A ,

C1 = C3TCA+C4RBA+V 1 ‘ 
(3)

C6 = C4TBA+C3RCA+V6 ‘ 
(4)

at corner B,

C2 = C1TAB+C5RCB+V2 , (5)

C4 = C5TCB+C1 RAB+V4 , (6)

at corner C,

C3 = C2TBC+C6RAC+V3 , (7 )

C5 = C6TAC+C2RBC+V 5 . (8)

Equations (3) - (8) can be written in matrix form,

[ Z] ( C )  = (V) , (9)

where [Z] is the coupling matrix and (V) is the excitation column .

The coupling matrix [2] is unsynwnetric. Its elements specify the
interactions among the surface waves. The diagonal elements are Z11 =l .
The other elements are 0, Txy or Rxy. The transmission coefficient

v and the reflection coefficient ~~ 
are given by

F
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-jkp~
~~ 

= e Y 
~ D5

(3600_cz ,00,900) (10)
2 hxy

— jkp
R e xy i fl ( f l O fl O f l A O t
x — ~ V ~~~~ J ~ll

~xy h

where 
~x 

is the distance between the corners X and Y, cz is the wedge
angle fo~ corner V and D~~(IhIt1 1 ,S o) is the scalar wedge d~ffraction coef-
ficient given by Kouyoumjian and Pathak [3].

The elements of the excitation column (V) relate the source excita-
tions to the surface waves on the polygon surfaces. The typical element
of CV) is given by

— j k p
5~~

= e D5(00,,1 ,900) (12)
h

where 
~sx 

is the distance between the source and corner X. However,
when a corner is not directly illuminated by the source, the excitation
el ement associated wi th that corner is 0. Furthermore , for the TM case ,
the diffraction coefficient Ds in Equation (12) is i dentically zero and
should be replaced by its normal derivative [2].

From the matrix equation , Equation (9), we obtain the amplitudes
of the surface waves on the polygon surfaces. The scattered field at an
observation point P is equal to the sum of the fields associated with
all the rays emanating from the cyl i nder and passing through P:

U (P) = ~ U,.~(P) , (13)
rays

which includes the reflected field and the diffracted field. ReferLt~to Figure 2, the reflected field associated wi th the reflected ray S~P
emanating from the image S’ is given as

—jkp
Ur, = ~ 

e r 
, (14)

P5 i p

where the posit ive sign is for the Neumann (hard) boundary conditiort
associated with the magnetic line source, and the negative sign is for
the Dirich let (soft ) boundary cond ition associated with the electric

4
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Figure 2. Direct ray SP, r~Llected ray S’P, singly-diffracted ray ~~~~~~~~~ and surface-wave
diffracted ray ABP.

line source. The singly-diffracted field associated with the ray SAP
is given by

—jkp~~ ikPAp
U
~Ap = 

e Ds(4A,~A ,
9O°) ~~~~~~~~~~~~. , (15)

and the surface-wave-diffracted field associated the surface wave C1 is
given by

— jkp~~ 1
= c 1 

e
r..... 7 Ds (1

~B, O° ,9O°) (16)

These fields , Equations (14), (15) and (16), exist only in their illumi-
nated regions. In the shadowed regions the corresponding fields vanish.
Surrining the reflected fields , the singly-diffracted fields and the sur-
face-wave-diffracted fields , we then obtain the scattered field at P.
This field depends on the orientation of the polygonal cylinder . As the
cylinder rotates, the scattered field at P, i.e., U(P), then varies with

5
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time . Therefore one may write U(P) as U(P,t) which is essentially equi-
valent to ~(t) of Equation (1). A computer program is written for calcu-
lating U(P,t) (or ~(t)).

In this investigation we are interested in studying the power den-
sity spectrum of the backscattered field. The power density spectrum of
the backscattered field can be easily calculated after E(t) of Equation
(1) as a function of t is obtained .

Because f(t) is a periodic function of t wi th period 1, it can be
represented as a sumation of its Fourier series ,

= ~(m) e
32~

mtIf’T 
. (17)

If (rn) ! ~ 0, for m !>N0/2, then Equation (17) can be adequately approx-
imated by

N /2-l
f(t) = ° r(~) e

32~
mt/T

m= - N0! 2

= 
N

0
-i 
r(m-N0/2) e

j 2 m o~
2)t/T (18)

Let

— 
j rr N0t/T 

—

~(t) e = z1 (t) , (19)

and

r(m-N0/2) = V1(m) . (20)

Then

= ° F1 (m) e32~mt/T 
. (21)

The inverse transform is

= 1 N0-l r1 (t ) ~_j2wmtu/T . (22)
0 tN0/T=O

6
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Equation (22) can be solved using FFT programs .

From Equations (1) and (17), we have

— 
j(u0+2 m/T)t

= 

m~-xt 
F(m) e . (23)

The power density spectrum of Equation (23) is defined by [4]

T j[(w-w0)-2~rm/T)t 2
s(~ ) = 

~~~~

— f ° ~ ~(m) e dt
0 -T~ m=~ co

sin [(w-u )—2iirn/T]T
~ (m)

o m _co (w-w 0)-2irrn/T

— 
sin [(w-w )-2iim ’/T]T0V ~*‘  ‘‘  __________________ . (2 4)

i F ~m / ~‘ \ I
I ~~&I~~W )-~ rm

m -co 0

As T0-*co

2
S ( w )  = 2~s m~

_co 
Ir(m) I ó [ ( w -w

0
)-27rm/T] . (25)

Thus the power density spectrum of the scattered field from a rotating
cylin der consists of spectral lines located at

= w0+2lTm/T = w 0+mNct , m=O ,±1 ,±2,”~~ . (26)

Figures 3 to 10 show some power density spectra of the backscattered
fields from a large rotating conducting cylinder. The cross-section of
the cyl i nder is an N-sided orthogonal polygon. The spectra in Figures 3
and 4 are set to 0 dB at m=O (w =

~~ 0 ) .  The dB values of the spectra in
other figures are then adjusted relative to these two spectral lines.
Exam ining these figures , we note several i nterest ing features~

(1) The spectrum is symmetric about m=O. This property is due
to the symmetry possessed by the scatter ing orthogonal
polygon-cylinder. In the next section , we shall show that
the power density spectrum of the backscattered field from
a rotating cylinder with an arbitrary cross-section in
general does not have this symmetry property.

7
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(2) The spectrum at m=O is not always a maximum as evidenced
from Figures 7 and 8. This is probal ’y true when the length
of the polygon side exceeds several times of the incident
wavelength .

(3) As Im~ increases , the spectrum usually decreases monotonically
and faster for the TM case. However , for the TE case the
spectrum has a local maximum around Im~ ~ WD/Nct, where 

~D 
is

the Doppler angular frequency given by

WD  
= 2ii~2acs/A0 = 2acsw0/c , (27)

where a and acs are the largest radius and the largest linear
velocity of the cylinder, respectively. For example, in
Figure 4 , w~~2O1ra and a local max imum occurs at rn! = 6
R~ WD/NcS. Tile differences in the shapes of the spectra in
the TM and TE cases are probably due to the fact that in the
TM case, the induced current on the surface of the cylinder
is perpendicular to the velocity of the cylinder , while in
the TE case the induced current has a component parallel to
the velocity .

(4) In all these figures , although not shown explicitly, the
spectrum drops sharply when Im i  > WD/NcZ. In the next section ,
we present an analytical evaluation of this phenomenon .

Figures 3-10 are the backscatter power density spectrum when a
plane wave is incident upon a rotating orthogonal polygon-cylinder.
They can be obtained by using a line current lO4x0 away from the center
of the cylinder. At such a large distance , the curvature of the incident
wavefront at the cylinder is very small and the incident wave can be con-
sidered as a plane wave. However, when the line current is only b O x 0
or less away from the center of the cylinder , the line current is in the
near-field zone of the cylinder and the wave incident upon the cylinder
is a cyl i ndrical wave. The monostatic scattering power density spectra
when the line current is 2SA o, 50A 0 and l00A0 away from the center of the
cylinder are found to be essentially the same as those shown in Figures 3
to 10. Thus the power density spectra of a rotating cyl inder can be ob-
tam ed using near-field measurements .

III. ANALYTICAL APPROACH

Numerical solutions reveal some interesting properties of the power
density spectrum of the backscattered field from a large rotating cylin-
der. In this section we shall investigate this problem analytically to
further substantiate the results established from numerical solutions
presented in the last section .

The vector potential due to a current source J(~,t) is given by

16
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— —  ~o I f  ~(~‘ ,t’1 o (t’+R/C-t) dx ’dy ’dz ’dt’ , (28)A(r,t) = 47 Jj R

where R = ft-r ’ I and ~ is a Dirac delta function . Taking the Fourier
transform of Equati on (28), ‘.

Uo If j(~ ’,t’) ~_jw(t’+R/c) dx ’dy ’dz ’dt ’ . (29)= 47 J~
, R

In the two dimensional problem considered here, J r ’ ,t’) is i ndependent
of z’ . Therefore performing the integration over z’ in Equation (29),
we obtain

0 ‘) H (2)(wR l /c)e
_iwtI 

dx ’dy ’dt’ , (30)= 

~~ 
~i(~ ’ ,t 

~

where R1 = 
~~
-

~~~~

‘ I and ~~~ is a Hankel function of the second kind . In
deriving Equation (30), use has been made of the identity

~~~~ 
H~
2
~(kR1)I 4irR dz ’ = 4j ‘ (31 )

with R = [R~ + (z_ z 1 ) 2]
I .1’2. In the far field , Equation (30) becomes

= 
u0e~~~

4 e Jwp /C 

j j  ~~~‘ ,t’) -iw (t’-~~~’/c)e dx ’dy ’dt’ ,V’8irwp / c
(32)

where ~ is a unit vector along ~~~.

Now let J(p,t) be the induced current on the rotating cylinder.
Then from the vector potential we obtain the scattered electric and mag-
netic fields. In the TM case, the scattered electric field has only the
z-component.

_j~u0e J~T/4 e iwP/c
Ez(p, w) = 

/81TI.Ip/C II J ( ~~
I , t I ) e ~

i w (t
~~~

c
~

• P /c ) dx Idy Id t I

(33)

And in the TE case, the scattered magnetic field has only the z-component ,

= -jwe~~
”4 e j

~~’
c if [~xJ(~ ’ ,t’)]

~ e
j t

~~~~
’/’C)

c /8~w p/~ dx ’dy ’dt ’
(34)I

V 
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The factors outside the integrals in Equations (33) and (34) will be
des ignated as TM and TE, respectively.

We shall evaluate the integrations in Equations (33) and (34)_by
transforming the coordinate system (p,t) to the coordinate system (~1,t j )
which is corotating with the cylinder. The coordinate transformation is
governed by the followi ng relations

x = x1 cosat1 - y1 sinat 1

y = x1 sinat 1 + y1 Cosat1 , (35)

t = t l

These equations can be derived by referring to Figure 11. The jacobian
of the transformation is unity . Therefore Equations (33) and (34) become

— 
-jw(t~-~

.
~j/c)Ez(p,w) = TM II Jz(~1,tj) e dxjdY~dt~ (36)

and

Hz(~
,w) = TE JJ [~xJ(~j,tj)]~ e dx~dy~dt~ . (37)

y

4 i

7\X

Figure 11 . Transformation of coordinates .
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To proceed , we assume that the incident plane wave has the form
exp[jw0(t-x/c)], which , if wri tten in the corotating frame, becomes

exp{jw0[t1 -(x 1coscst1 - y1si nat 1 )/ c ]}

= exp{jw0[t1 -r- 1cos(at1 +q 1 )/c]}

k jk(cst +~ )
= e ~ i~ ~~(w 0p 11c) e 

1 1 (38)
k~~~ co

where p 1 = (x~ + y
2
)1/2 

~l = tan~~~(y /x 1), and J is a Bessel function.
In derivin g Equati~n (38), use has be~n made of tI~e relation

~jxsin4 = 

k~~-co 
Jk(x) e

i
~~ . (39)

In view of Equation (38), the induced current (p1, t1 ) can be written
as

~ —k —
= ~ j ak(p l ) e . (40)

k= -~~~

Thus using Equations (36), (37), (39) and (40), we obtain the backscat-
tered fields,

°‘ -(k+m) j(k+m)qj
E
~
(p,w) = TM JJ ~ ~ a,,~(~j)J~(wPj/ c)e

k ,m=-~= -j [~ -w 0- ( k +m)a] tj
e pjdpjd4jdtj (41)

Hz(~
,w) = TE JJ ~ ~-(k+m-l ) a Lk (~ j )Jm (~pj / c)e J

~~~
m
~~1

k ,m=-°~

[e~~ e~~~~~
o °~~

’
~ 

)cs]t~ 
- ~~~ ~~~~~~~~~~~ 

)cz]t~

}
pjdpjdc$jdt j , (42)

where a 11 and a1 are the components of i parallel and perpendicular to the
z-axis , respect ively. 

~j is the angle between aj and the positive x1-
axis. Substitute rn=n-k into Equation (41) and rn=n— k 1 into Equation (42)
and carry out the integration over tj1
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rr -n
E
~
(p, w) = 2ir TM II ~ ~ 6(w-w 0-na) e.)J n - =

k~~-co 
aIlk (P ~~~~~~~~~ 

pjdp~d~j (43)

Hz(~,w) = 2ii TE if - ~ ó (w-w~-ncz) 
k~~co 

alk(j)

I j [(n—1 )q.j+~j] j[(n+l )~j—t 31 ]
Jn_ l_ k (wpi/c) + e Jfl÷l_ k (wP~

/c)
~

p~dp~d4.~ . (44)

The integrations in Equations (43) and (44) are over the entire
circumference of the cylinder ’s cross-section . If the cross-section is
an orthogonal polygon of N sides , then Equation (43) can be simplified ,

— -n Jfl~j N-b j j~1I~E -~(p,w) 2iT TM JJ ~ ~ ó (w-w0-ncx ) e e
n--~ i=O

k~~-co 
aIlk (p l ) Jfl~k

(wp Vc) ~~~~~~
(45)

where the integration is over one side of the polygon only. Since

N-l ji~~-n
e N 

~ 
N
~~flffl N , (46)

i=0 m=-~
where IS

j , j  is a Kronecker delta , therefore Equation (45) reduces to

- N  jmNq~j
E~
(p,w) = 27rN TM if m~-=~ j 

m 
ô(w-ui0-mNci) e

~ 
aIIk (p1 ) ~rnN— k~~’~1”~ 

pjdpjd4j
k=—=’ (47)

Similarly, Equation (44) reduces to
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= 2~N TE Jf 
~~ 

- 

~~

_—_ 6(~ -w~-mNa) 
k~-~= 

i k ]

I j [(mN—l)qj+~j]e JmN_ l_ k (wPj/ c)

~ j[(mN+l )~ j-~ .j] 1
+ e Jmr!V1

~
l_ k

~
H c)t0i

~~~~
i . (48)

To solve Equa tions (47) and (48), we need to kno w the quan t i t i es
a 1 an d a1. Unfortunately these quantiti es cannot be easily found except
for the case of a circular cyl i nder. For a circular cylinder with radius
a [5]

aIIk (pl ) = -2 
2 

1 cS(p —a) , (49)W
0

P
0

Ttp
1 H~ ~(w 0p 1/c) 1

a.k(P l ) 
= 

7rw0p1 /c H (2) ’(w p / c )  
6 (p 1-a) , (50)

which are independent of 
~~ 

Therefore E ~~~~ and H
~
(
~
,w) vanish except

when mO. This means that the fields scattered from a rotating circular
cylinder have the same frequency as the incident wave. It is conjectured
that for an orthogonal polygon-cylinder with a large number of sides , the
a and a1 will be close to those given in Equations (49) and (50) with
t~e constant rad ius a replaced by the variable radius a(~1). Therefore
we shall substitute Equations (49) and (50) into Equations (47) and (48)
and obtain

jmN~j 
______________E

~
(o,w) = TM J ~ N 6(o-w0—mNa)e (2) d~k - o  Hk [w0a(~1 )/c

(51)

jmN~p ’
H (~ ‘~

) = TE J ~ N 6(~-w -mNa)e 
1 

~ (2” 
1

Z 
m=-~ k~— o Hk 

/ [w 0a( I1j )/ c]

i (j (~~-~~)
jmN_ l_ k[~~(1ti) /c]

—j(t~j— q~ ) 1
+ e JmN+l ..k[wa(+j)/c]1 ~~~ (52)

where we have l umped all the factors nonessential for calculating the
relative power density spectrum into TM and TE. The spectrum consists
of spectra l lines. A single spectral line is proportional to the square
of
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jmNq1 JmN_k [(wo~~~~)8(4l )k]
Em 

= 
j N e (2) d~1 (53)
—ir/N k _ x

~ Hk [w0a(~1 )/c]

or

jmN41 co fHm = N e (2)’ 
1 . 

~cos~ J
~N_ k [(wO+mNa)a (0l )/c]

-~i/N k -oo Hk [w0a(41 )/c] I

- j 5 i f l~ l (w0+~N~)a~~1)/c 
JmN~kb o+m~~)a(~l )/c]}d4l~

(54)

where we have assumed that the range of integration spans one side of
the polygon and that 

~l~~
/2.

With low incident frequencies , w0a(41)/c < <  1. The arguments of
the Bessel and Hankel functions in Equations (53) and (54) are very small.
Thus the values of Em and Hm decrease very fast as Im i increases . This
means that no significant spectrum spread i ng occurs with low incident
frequencies.

On the other hand , with high incident frequencies , wo >> mNa and
a(~1) > A . The arguments of the Bessel and Hankel functions in Equations
(53) and ?54) are in the order of w~~/2ci , where ~ 

is the Doppler angular
frequency dei-ined in Equation (27). If we plot the Bessel and the inverse
of the Hankel functions with fixed arguments against the orders , we note
that if the arguments are large , say > 10, then the values of the Bessel
and the inverse of the Hankel functions decrease very fast when the orders
become greater than the arguments. This is shown in Figures 12-15. Thus
with high incident frequencies , we can properly truncate the sunmnations
in Equations (53) and (54) at

~~~ 
jmN~1 

[WD /cs] JmN_k [~o
a(
~1) /c]

Em = J Ne (2) d4 1 , (55)
-it/N k - [CJJD /a] Hk [u 0a(4 1 )/c3

it/N jmN~1 
[‘~D’~’] 1H .f _ Ne (2)’m it/N k -[w0/a] Hk tw0a(~1 )Ic]

fcos41 J~N~k[wOa(4l)/c]-isin4l w0a(~1 )/c 
JmN~k~~o8 l c

~~~~l~~
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Figure 12. Plots of IJ~( b 0 ) I  and J~(5O)I.

It can be easily shown from Equations (55) and (56) that in general
Em ~ 

E_m and Hm / H_rn . This means that the spectrum is generally not
symmetric about m=O. A sufficient condition for the spectrum to be sym-
metric is a(4,l)=a(-c~1) for -it/N 

< ~ < it/N, which can also be derived from
Equations (55) and (56). For an orthogonal polygon—cylinder , this con-
dition is certainly satisfied . Therefore the backscatter power density
spectrum of an orthogonal polygon-cylinder is symmetric about m 0 .
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Figure 13. Plots of ~IJ~
2
~~lo)~

_ I 
and ~H~

2) (5O)~~1 .

It is also obvious from the properties of the Bessel and Hankel
functions wi th large arguments and large orders that the values of Emand Hm are very small for m l >

Table 1 shows the compar i son of the power density spectra calcu-
lated using Equations (55) and (56) with those obtained in the last
section. The agreement is very good . This not only substantiates the
salient features of the backscatter power density spectrum of a large
rotating cylinder established in the last section , but also indicates
that the approximation of using Equations (49) and (50) for polygon-
cyl i nders is indeed a good approximation .
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Figure 14. Plots of IJ~(bO) I and J~(50)l .

25

_______ --~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ -~~ --



01

S 

• I./IH~
2) ’t ,o I *

x I./IH~
2) (5O)I 

I

5 
I

10—I 
—

I

I 

*

*

10 2 _ 
*

I *

I

I0~~ 1 1 I I I I
0 10 20 30 40 50 60 70

n

Figure 15. Plots of jH~2r (lO)hI and

26 
—

j

-— ~V_ ~ V~ VV - - - - ~~~ — - - V - 
~~~~~~~~~~ - V •~~__~ V ~_V•~ _V V_~~~~VV ~~ — ~ VV_V VV__



TABLE 1
COMPARISON OF THE POWER DENSITY SPECTRA

a = 5x01 N = l O  a = l O x 0, N = 1 0

rn TM(dB) TE(dB) 
- 

rn TM(dB) TE(db)
— 

* * *0 0 0 0 0 0 - 4.0 - 3.6 - 3.4 - 3.4

1 - 2.5 - 2.6 - 2.4 - 2.5 1 - 0.9 - 0.8 - 0.8 
-

- 0.7

2 - 9.9 -10.2 - 8.8 - 9.6 2 - 0.8 - 0.9 - 0.7 - 0.8

3 -17.7 -18.5 -15.6 -16.1 3 - 4.5 - 4.8 - 4.2 - 4.4

4 -24.7 -26.1 -19.4 -21.3 4 - 9.7 -10.1 - 8.9 
-

- 9.4

5 -31.1 -33.6 -23.9 -24.3 5 -14.9 -15.6 —13.6 —14.4

6 -39.7 -45.1 -20.4 -24.4 6 -19.6 -20.5 -17.5 -18.4

7 -62.7 -64.0 -40.0 -50.5 7 -23.8 -24.9 -20.2 -21.7

8 8 -27.4 -28.9 -23.1 -24.9

9 -30.8 -32.7 -23.8 -26.3

a = lOA n, N = 20 
— 

10 -34.1 -36.7 -26.0 -28.3

rn TM (dB) TE(dB) 11 -37.7 -41.4 -25.5 -28.3

o + 5~9 + 6.1 + 6~1 + 6.1 12 -42.1 -48.3 -21.5 -29.7

1 - 3.9 - 3.8 
— 

3.4 - 3.5 13 -55.9 -60.3 -31.5 -37.1

2 -14.6 -14.7 -13.0 -13.8

3 -22.9 -23.1 -19.8 -20.8 
— 

a = 5x 0, N = 20

4 -29.6 -30.1 -22.8 -25.8 m TM(dB) TE(dB)

5 -36.0 -37.3 -25.8 -28.7 0 + 3~6 + 3.7 + 3~~ + 3.8

6 -46.0 -48.6 -23.2 -29.6 1 -13.0 -13.0 -11.4 -12.1

7 -46.9 -72.8 2 -26.6 -27 .2 -20.4 -22.3
8 3 -43.1 -45.4 -22.7 -24.4

* GTD solu tions
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IV. CONCLUSIONS

In this report, two methods for calculating the power density
spectra of the scattered fields from a large rotating conducting cylin-
der are presented . Results obtained using these two methods agree very
well wi th each other.

The backscatter power density spectrum of a rotating cyl i nder with
arbitrary cross section consists of discrete spectral lines. For an
orthogonal polygon-cyl inder, the spectrum has the following interesting
features :

(1) It is symmetric about the incident angular frequency.

(2) For the TM case, the spectrum decreases monotonically.
However , for the TE case, it has local maxima around

where 
~‘~D 

is the Doppler angular frequency.

(3) The spectrum is essentially confined to a bandwidth
Wo WD<W<Wo+WD.

(4) The near-field spectrum is essentially the same as the
far-field spectrum.
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